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Hugh Luckock 
Department of Theoretical Physics, University of Manchester, Manchester MI3 9PL. UK 

Received 29 May 1991 

Abstract. It is shown that Nicolai’s theorem does not generally apply on spaces with 
boundaries unless the supersymmetry algebra has a subalgebra whose bosonic generaton 
preserve the boundary. In this case, the unbroken symmetries generated by the boundary- 
preserving subalgebra are sufficient to ensure the existence of a Nicolai map, provided 
that any boundary conditions are invariant under this subalgebra. 

In 1980 Nicolai showed that for any supersymmetric action there is a transformation 
of the bosonic variables which renders the bosonic part of the action free, and whose 
Jacobian is exactly cancelled by the integration of the fermionic variables [ I ] .  Thus, 
any supersymmetric theory can be transformed to a free bosonic theory. Such a 
transformation is called a Nicolai map. 

The simplest example of a Nicolai map is Langevin’s equation, which establishes 
a functional dependence between two stochastic variables: the position of a Brownian 
particle, and the white noise representing the random forces which drive it. The 
behaviour of the Brownian particle can be described by Witten’s supersymmetric 
quantum mechanics [2]. If one starts with a path integral description of this model 
and integrates out the fermions, then changing variables via the Langevin equation 
yields a description of the generating noise process. The action functional for the noise 
is found to be quadratic, indicating that the noise is Gaussian. 

The Langevin equation is typical of Nicolai maps in that it takes the form of a 
differential equation relating the two sets of bosonic variables. It would appear that 
such a map could be made invertible by imposing a certain number of boundary 
conditions on the bosonic variables in the supersymmetric theory. Unfortunately, local 
boundary conditions are not respected by the full supersymmetry group, which contains 
translations normal to the boundary. The imposition of such conditions would therefore 
break the supersymmetry and invalidate the usual proof of Nicolai’s theoremt. 

Nicolai’s theorem rests on a result due to Zumino [3], that the vacuum energy of 
any supersymmetric quantum theory vanishes to all orders of perturbation theory. In 
other words, the normalization of the fuctional integral is unaffected by any supersym- 
metric perturbation of the action. Zumino’s original proof fails when the supersymmetry 
is broken by the presence of boundaries; however, it is shown below that the desired 
result can be recovered if the supersymmetry has some subalgebra whose bosonic 
generators preserve the boundary. In this case, a partial supersymmetry can be restored 
by adding a total divergence to the super-Lagrangian. 

t This problem does not arise for periodic conditions, which are interpreted more naturally as continuity 
requirements on multiply-connected spaces than as boundary conditions. 
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Thus, when boundaries are present, the proof of Nicolai's theorem requires the 
existence of a boundary-preserving subalgebra. It is also necessary that any boundary 
conditions must be invariant under this subalgebra. This invariance places quite strict 
requirements on the form of admissible boundary conditions. 

Zumino's result relies on a demonstration that the expectation value of a supersym- 
metric Lagrangian vanishes in a supersymmetric state. This argument is summarized 
below. 

We work in a superspace parametrized by commuting coordinates x" ( F  = 1,. . . , n) 
and anticommuting coordinates #" ( a  = 1,. . . , D ) .  The model has a super-Lagrangian 

2(x ,  #) = A(x)+ @"B.(x) +- #"#bC,,b(x)+. . 1 
2 

+ ( 0 1 0 2 . .  . e")L(x) (1) 

which depends on some superfield @(x, e). In the case of simple supersymmetry the 
fermionic generators have the form 

where C is the charge conjugation matrix and y' are appropriate gamma matrices. 
The variation of the K "  component of the super-Lagrangian under an infinitesimal 
supersymmetry transformation 2 ~ 2 ~  = ( 1  + E ' Q , ) ~  is then' 

SJ = ( - 1) D ~ h [  ( Cy')bcJ,J"' - S t  L ] .  (3) 

Taking expectation values ( ) a  over an ensemble (or quantum state) 8 which is invariant 
under supersymmetry, we find that 

0 = S.(K")x (-l)D€b[( Cf"b,J,(J"')x - ~ ; ( L ) S ] .  (4) 

But the supersymmetry algebra includes the generators a,, and so the invariance of 8 
implies that (J"')r is constant. It follows that the expectation value of the Lagrangian 
vanishes identically; 

( L ) ,  = 0. ( 5 )  

Note that non-invariant boundary conditions on @ would break the assumed 
supersymmetry of the ensemble 8 and thereby invalidate the conclusion ( 5 ) .  The 
argument would also fail if the weight of each field configuration in 8-i.e. the 
functional measure-was not strictly invariant under supersymmetry transformations. 
In particular, if the weight is the exponential of an action, then the variation of the 
latter must vanish exactly. 

Suppose now that we have a super-Lagrangian consisting of two parts, 

2J @I = 6p,r @I + gzmr @I ( 6 )  

each transforming separately as a superfield. The coefficient g is thought of as a 
coupling constant. If the action of a configuration @ is given by the integral 

S , [ @ ] -  d " x d D # Z 8 =  J (7) 
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then we define a regularized connected vacuum functional Ug with 

One now has 

where the subscript g indicates that the expectation value is taken over an ensemble 
in which each superfield configuration @ has weight e-'.[*'. In the absence of boun- 
daries, S, is invariant under supersymmetry transformations and so ( 5 )  implies that 
the expectation value of Lin, vanishes identically. It then follows that U, is independent 
of g, and so 

for all g. This identity is used in the proof of Nicolai's theorem. 
It is apparent that the argument used to obtain (10) simply does not hold if the 

supersymmetry is broken by boundaries. It would therefore seem that Nicolai's theorem 
must be abandoned in this case. However, we will see that under certain conditions 
it is still valid. 

If the supersymmetry algebra has a subalgebra whose bosonic generators preserve 
the boundary, it turns out the theory can be made invariant under this subalgebra by 
the addition of a total divergence to the super-Lagrangian. By integrating out the 
dependence on certain coordinates one then obtains a 'reduced' supersymmetry in a 
space of lower dimension [4]. Zumino's argument can then be used to recover identity 
(IO), as required for Nicolai's theorem. 

Indeed, suppose that there is such a subalgebra. Without loss of generality w,e take 
its generators to be {a,: c =  I , .  . . , i?} and {Q&:  a^= I ,  .. . , D},  where i ? < n  and D<D. 
In order that the subalgebra closes [4], we require that 

(Cy"'$=O 6=6+1,  ..., n i+b^=~, . . .  6. (11) 

In what follows, hatted Greek indices range from 1 to 6 while hatted Latin indices 
range from 1 to D. Similarly, barred Greek indices range from i?+l to n, while 
barred Latin indices range from D+ 1 to D. 

If 2 is replaced by the modified super-Lagrangian 

2= exp( O a (  Cy*)z,#6J&t' (12) 
then the action functional 

S[@] = d"x d D 0 2 [ @ l  (13) 

is invariant under the subalgebra [4]. In fact 3 a n d  Y only differ by a total divergence, 
so that all we have done is to add a boundary correction to the usual action. 

If @ obeys constraints-in particular, boundary conditions-which are invariant 
under the boundary-preserving subalgebra, then the set of superfield configurations 
which contribute to the functional integral will also be invariant. The invariance of 
the action-and hence the functional measure-then ensures that the statistical 
ensemble (or quantum state) is itself invariant under the boundary-preserving subal- 
gebra. 

J 
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We now define a reduced super-Lagrangian P d ( x " ,  0') by integrating out the 
dependence of 2' on the coordinates (x", e");  

D J' fi dx" fl dOe2'(xW,O''). (14) 

Under an infinitesimal transformation 2 U Lfe = (1 + E ' Q ; ) ~  the variation of the 
reduced super-Lagrangian is found to be 

8 . p  = e " a y r d  (15) 

y d ( x C ,  ei) E 
*=,?+, *= , ,+I  

where 

- a  
ae" 0.- =7+ (c#)8&aG (16) 

are the fermionic generators of a 'reduced' supersymmetry which acts in t? dimensions 
[4]. These obey exactly the same anticommutation relations as the Q;. 

The boundary-preserving subalgebra can therefore be represented by the action of 
the reduced supersymmetry generators Qi, 8, on Yd. Furthermore, Scan be expressed 
as the integral of Y" over the remaining coordinates ( x i ,  e'). If 2Td consists of two 
parts as in ( 6 ) ,  then the invariance of the ensemble under the reduced supersymmetry 
allows us to apply Zumino's argument in t? dimensions to recover the desired result 
(10). The proof of Nicolai's theorem then follows directly. 

The existence of a boundary-preserving subalgebra is therefore sufficient to ensure 
the existence of a Nicolai map, provided that one uses the invariant action (13) and 
imposes only invariant boundary conditions. I n  the absence of such a subalgebra, 
however, there appears to be no way to restore even a partial supersymmetry, and. 
neither Zumino's result nor Nicolai's theorem can be invoked. 

The best known Nicolai map is the Langevin equation, which can be used to 
transform Witten's supersymmetric quantum mechanics [2] into a free bosonic theory 
describing the behaviour of the generating noise process. It has recently been observed 
[ 5 ]  that Nicolai maps for this model exist only when the action includes corrections 
which restore part of the supersymmetry broken by the boundaries. This observation 
is simply explained by the preceding arguments, and provides a nice illustration of 
the general result. 

The simplest version of supersymmetric quantum mechanics can be constructed 
from the super-Lagrangian 

Z==f8,b4'DW'+ V(@) (17) 

where 0' is a superfield defined on a superspace with coordinates ( r ,  6 6'); 

@( r, i?, e )  = +'( r )  + e@( r )  + 6+'( r )  + 6ec'( 1). (18) 

The superderivatives 0, D and the supersymmetry generators Q, 0 have the form 

and obey the anticommutation relations 

(20) 
a 

(Q,  Q) = - {D,  D}=z- ar {Q, Q }  =(0, Q} = { D, D }  = {D,  D} =o.  
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Integrating out the dependence of 2'on the anticommuting coordinates, and eliminating 
the auxiliary field c by its field equation, one obtains the supersymmetric Lagrangian 

L -  d0 d B ~ = f s , ~ ' ~ ' + f S ' ' V , , V , + t s , ( ~ ' * ' -  $$J)+ Vu&'$'. ( 2 1 )  I 
In this example, the boundary is just a pair of points f , ,  f 2 .  There are no bosonic 

symmetries which preserve the boundary, and so the only two boundary-preserving 
subalgebras are those spanned by Q and 

Equation ( 1 2 )  tells us how the super-Lagrangian must be modified to restore 
invariance under each of these subalgebras. Integrating out the dependence on 0 and 
8 then yields the modified Lagrangians 

respectively. 

which are guaranteed to be invariant under Q and Q respectively. Our analysis shows 
that these are the only two forms of the Lagrangian which admit Nicolai maps. 

Recall, however, that Nicolai's theorem can only be invoked if any boundary 
conditions are invariant under the appropriate subalgebra. Anticipating that the Nicolai 
maps will be first-order differential equations, we will want to specify an initial (or 
final) value of 4. The variation of 4 under the action of Q is proportional to $, so to 
ensure that this boundary condition is Q-invariant we must also impose a Dirichlet 
condition on 6. (No further conditions are needed, since $ is itself Q-invariant.) 

Thus, Q-invariant initial conditions suitable for the Lagrangian L,  have the form 

4(tJ = 4, *(r , )  = 0. ( 2 3 ~ )  

4(t,)= 41 & ( r , ) = o .  ( 2 3 6 )  

Our earlier analysis demonstrates that, for each of these initial conditions, the corre- 
sponding form of the Lagrangian ( 2 2 )  will admit a Nicolai map. 

Indeed this is well known to he the case, although in the standard demonstration 
the supersymmetric theory is obtained from the bosonic theory rather than the other 
way around: One begins with a white noise process q ' ( f ) ,  defined over the interval 
[t,, f 2 ] ,  with the probability distribution functional 

??[v( f ) ]=exp[-~/ r~  ~); ( f )qj(f)S,df] .  ( 2 4 )  

One then introduces a new stochastic process b(f) which is related to v ( f )  by a 
Langevin equation 

Similarly, Q-invariant initial conditions appropriate for L- have the form 

and a single boundary condition on 4, say 4(fl)= 4,.  

variables, which introduces the Jacobian factor 
The probability weight for a path + ( f )  is now derived from (24) by a change of 
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The anticommuting functions Xi([) and xi([) live in the same spaces as perturbations 
of the variables q ' ( f )  and + ' ( t ) ,  and hence obey the same boundary conditions. Since 
+ ( I , )  is fixed, , y ( t I )  must vanish; however q and 2 are unconstrained. 

Writing the integral (26) explicitly, with the anticommuting variables renamed JI 
and 4 as appropriate, the probability weight for + ( I )  is now just 

where the signs are determined by the choice of signs in (25) ,  the expressions for L,  
were given in (22). and all the variables obey exactly the initial conditions predicted 
in (23). In the present context, however, these conditions have not arisen from any 
supersymmetric considerations, but from the change of variables from q ( t )  to + ( I ) .  

The previous discussion showed that there are just two forms of the Lagrangian 
for supersymmetric quantum mechanics which admit Nicolai maps over a bounded 
time interval. It also predicted which boundary conditions were appropriate for each 
Lagrangian. We now see that the two known Nicolai maps for this model fulfil these 
predictions exactly. 

Note that in the example considered above, the form of the Nicolai maps is almost 
obvious from the Lagrangians (22). In general, however, finding a Nicolai map is a 
very difficult problem. For example, if 6, is replaced by a superfield Cy(@) in the 
super-Lagrangian (17), the supersymmetric Lagrangian will be quartic in the fermions 
and the fermionic integral will be much more difficult. (Nonetheless, various authors 
have succeeded in finding explicit Nicolai maps for this model 161.) In the general 
case, it is clear that a knowledge of the precise form of the action and the boundary 
conditions is likely to considerably simplify the search for a Nicolai map. 

Nicolai's theorem says that for any supersymmetric theory there is a change of 
variables which transforms it to a free bosonic theory. In practice, however, most 
Nicolai maps have been obtained by the reverse process; starting with a bosonic theory, 
one performs a propitious change of variables to obtain the supersymmetric theory. 
From this perspective, the boundary conditions and corrections to the action appear 
to come out as an irrelevant by-product. Should one ever wish to find new Nicolai 
maps for given supersymmetric models, however, it would be very useful to know 
these in advance. 

The arguments used above to determine the boundary conditions and corrections 
required for Nicolai's theorem can be applied to quite general models (provided that 
the supefsymmetry algebra admits a boundary-preserving subalgebra). The exact form 
of the Lagrangian is obtained by projecting out the relevant component of the modified 
super-Lagrangian (12). 

There is also a simple way of choosing invariant boundary conditons. It was shown 
in [4] that the 0"-independent components of Cg transform into each other under the 
action of the boundary-preserving subalgebra, and can be thought of as the components 
of a 'reduced' superfield Cg. Boundary conditions imposed on these components will 
carry a representation of the reduced supersymmetry. An invariant boundary condition 
can be imposed by requiring that 6 should obey any of a class of boundary conditions 
related to each other by reduced supersymmetry transformations. 

We conclude by remarking that, in the case of supersymmetric quantum mechanics, 
there appears to be a simple short cut for finding the Nicolai map. In this case, certain 
combinations of the superfield components can be identified with the variables in the 
free bosonic theory; it has recently been observed [SI that the appropriate combinations 
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are just the conjugate momenta of the bosonic variables in a version of the supersym- 
metric theory described by the modified super-Lagrangian 2'. While this observation 
is not yet properly understood, it is tempting to speculate that similar shortcuts might 
exist for more general cases. 

I am grateful to the Science and Engineering Research Council for financial support. 
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